Hackathon für Assistierende Technologien "Kick off"- Meeting, 16.2.22

Agenda

- Vorstellungsrunde Organisations-Team
- Hintergrund, F&E Projekte
 - o FH Technikum Wien, HappyLab, F&E Projekte.
- Projektvorstellung
- Gruppenfindung (Voting)
- Nächste Termine/Angebote
 - Workshops
 - o Kommunikationskanäle
- Frage- und Vorstellungsrunde für Teilnehmer*innen

Vorstellung Hackathon-Organisations-Team

- Benjamin Klaus, MSc., Softwareentwicklung, Web-Technologien, UK
- Benjamin Aigner, MSc., Hardware- und Software-Entwicklung, Embedded Systems
- Iris Nemec, MSc., Rehabilitation Engineering, Medical Engineering, UK
- DI Agnes Scheibenreif, Rehabilitation Engineering, Medical Engineering, UK
- Dr. Sebastian Ganger, MSc., Softwareentwicklung, Software-Entwicklung, Artificial Intelligence & Data Analytics
- DI Chris Veigl, Projektmanagement, Software-Entwicklung

Hintergrund / Institutionen

- FH Technikum Wien
 - 12 Bachelor & 18 Masterstudiengänge, ca. 4500 Studierende
 - Seit 2010 F&E in den Bereichen Assistierende Technologien und AAL an den Departments Electronic Engineering (EE) u. LifeScience Engineering (LSE)
 - o Projekte: AsTeRICS, Modulaar, ULEA, ToRaDES, MistrAAL, Innovate, WBT, ...
 - o https://www.technikum-wien.at
- AsTeRICS Foundation für Open Source AT (seit 2017)
 - o Gemeinnütziger Verein, "Spin-Off" der FH Technikum Wien
 - Open Source Assistierende Technologien, Bausätze
 - o https://www.asterics-foundation.org/
- HappyLab
 - Wiens größter MakerSpace (Schönngasse 15-17, 1020 Wien)
 - o Werkzeuge für Holz-, Kunststoff-, Metallbearbeitung uvm.
 - o 24/7-Zugang über Mitgliedskarte / Schulungen
 - Austragungsort des Hackathon 22.+23.April (od. Workshops vorher!)
 - o https://www.happylab.at

Regionale Wissensdrehscheibe für Barrierefreie Technologien

• Förderung (und Bewusstmachung) von Barrierefreiheit von IKT-Produkten

- Beratung und Unterstützung für Firmen, NGOs, Privatpersonen
- Umsetzung von Kleinprojekten (Open Source)
- Hackathons und DIY!
- https://wbt.wien/

Freie Software und Hardware

- Offener Zugang zum Quellcode bzw. zu Design-Dateien
- Berechtigung, SW-Source Code bzw. HW-Designdateien:
 - o beliebig zu verwenden
 - o zu untersuchen (studierbar)
 - weiterzuverbreiten (auch gewerblich verwertbar)
 - o zu verändern / zu verbessern (anpassbar)
- Offene Hilfsmittel
 - o herstellerunabhängig
 - o nachhaltig
 - o reparierbar
 - o wiederverwendbar
- Typische Lizenzen:
 - o GNU GPL, LGPL, Cern OHL, CC share alike ("CopyLeft", "viral")
 - o FreeBSD, MIT, Apache2.0, CC attribution ("permissive")

Open Source & Partizipative Entwicklung von AT

AsTeRICS "Baukasten"

grafisches Design von AT-Lösungen

über 190 Plugins

https://www.asterics.eu/

https://www.asterics-foundation.org/projekte-2/das-asterics-framework/

• FlipMouse Eingabegerät

USB+BT

Infrarot Umgebungssteuerung

sensitiver Joystick (Mundstück)

Open Source Bausatz, €170

https://www.asterics-foundation.org/projekte-2/flipmouse/

• FABI Tasten-Interface

USB+BT

bis zu 8 Taster

Belegung flexibel

Open Source Bausatz, €40

https://www.asterics-foundation.org/projekte-2/fabi/

AsTeRICS Grid

UK/AAC + Umgebungssteuerung

Cross-Platform kompatibel

Youtube / WebRadio uvm.

https://www.asterics-foundation.org/projekte-2/asterics-ergo-grid-2/

https://grid.asterics.eu

Beispiel: Ultraleicht-Joystick / Fingertaster

- Spezielles Eingabesystem für einen Anwender mit Dychenne Muskeldystropie (DMD) aus Wien
- Sehr kleiner Bewegungsradius bzw. geringe Kraft der Finger
- Computerverwendung, Spielen, eMail & Internet, etc.
- Flexible Kombinationsmöglichkeiten, z.B. zusammen mit Eye-Tracking

Beispiel: Umgebungssteuerung / spezielles HCI

- Anwender mit Multipler Sklerose:
 Bewegung nur mit Gesichtsmuskulatur;
 flüsterleise Stimme, Visus 7%
- Audiogeführte Auswahl mit Screenreader;
 Sprachsteuerung: Umgebungssteuerung und Musikauswahl

Beispiel: Individuelle Kreativwerkzeuge

- Musikinstrument für Klienten mit Muskeldystrophie
- Augensteuerung + Sip/Puff
- Auswahl von > 20 Akkorden / Midi-Synthesizer
- https://www.asterics-foundation.org/projekte-2/flipmouse/verwendungsbeispiele/musik/

Beispiel: Muskelsteuerung mit Rest-EMG

- EMG-Steuerung für Klienten mit ALS-Erkrankung
- Flexible Anzahl von Muskelsignalen (EMG-Kanälen)
- Cursorkontrolle, Sprachsynthese
- https://www.asterics-foundation.org/computersteuerung-fuer-als-patient/

Beispiel: Spezielle Interfaces für Modellflug

- 4D-Joystick by Gerhard Nussbaum
- Steuerung von Drohnen, Hubschraubermodellen und von nicht-trivialem Spielzeug
- https://www.ki-i.at/4djoystick/

Smart Homes und neue Technologien im Haushalt

- Gefahren neuer (digitaler) Barrieren
- alte Küchengeräte wie z.B. ein alter Herd mit Drehschaltern ist oft einfacher zu bedienen und barrierefreier als neue, moderne Geräte mit "smarten" Funktionen und Touchscreens
- Aktuelle Forschung an der FH Technikum Wien zu einem barrierefreien Bedienpanel für Haushaltsgeräte

DIY / OpenSource AT und Citizen Science

- Rapid Prototyping, FabLabs & Makerspaces
- Evolution frei verfügbarer, adaptierbarer HW/SW-Designs

Organisationen für OpenSource AT

- E-NABLING The Future, https://enablingthefuture.org/
- Makers Making Change (Canada), https://makersmakingchange.com/

- Careables.org / digital fabrication for healthcare, https://www.careables.org/
- openBCI, https://openbci.com/
- openEEG (bioelectric interfaces), http://openeeg.sourceforge.net/doc/
- Hackaday Assistive Technology Challenge, https://hackaday.com/tag/assistive-technologies/
- Open Source Ecology (OSE) Germany, https://osb-alliance.de/mitglied/open-source-ecology-germany-e-v

Projektvorstellung

Projekt 1: FLipMouse und FLipPad

Projektname	FLipMouse und FLipPad: Konstruktion spezieller Eingabemodule
Projekteinreichung	FLipMouse: Jan Specht, Johannes Mader, Greg Mans FlipPad: Felix Pell
Mentor*in	Chris Veigl
Projektbeschreibung	Für die oben genannten Anwender soll eine FLipMouse bzw. ein FLipPad nach Anleitung erstellt werden.
Fähigkeiten und Schwerpunkte	Löten

Projekt 2: Do it blind (DIB)

Projektname	Do it blind (DIB) – Barrierefreies Rapid Prototyping
Projekteinreichung	Johannes Strelka-Petz
Mentor*in	Johannes Strelka-Petz
Projektbeschreibung	Bei "DIB – Do It Blind" geht es um die Inklusion von blinden und sehbehinderten Menschen in der Makerbewegung. Wir identifizieren und überwinden Barrieren beim Zugang zum 3D-Druck.
Fähigkeiten und Schwerpunkte	CAD, 3D-Druck

Projekt 3: Mediensteuerung & Aufzug Soundausgabe

Projektname Projekteinreichung	Mediensteuerung & Aufzug Soundausgabe Ronald Wintersteiner
Mentor*in	Ronald Wintersteiner
Projektbeschreibung	Medien-Steuerung (TV, Filme,) mit div. Eingabegeräten (Zigbee, Arduino/ESP,): Mit Hilfe von einem Raspberry Pi und div Zusatzmodulen (Conbee II Stick plus Zigbee Geräte oder einem ESP-Chip mit div Sensoren (Ultraschall,)) kann der Fernseher gesteuert werden. [Ein/Aus, Lauter/Leiser, Apps starten, Filme/Serien von einer Festplatte/einem USB-Stick abspielen,] Aufzug Soundausgabe: Eine Aufzug wird
	mittels ESP32/Arduino Board, Sensoren und einem Lautsprecher umgerüstet, damit man ein auditives Feedback über die Aktionen erhält.
Fähigkeiten und Schwerpunkte	Programmieren, Löten

Projekt 4: Taktile Beschriftungen fürs HappyLab

Projektname	Taktile Beschriftungen fürs HappyLab
Projekteinreichung	Karim Jafarmadar (HappyLab)
Mentor*in	Karim/Lukas vom HappyLab
Projektbeschreibung	Türschilder und QR-Codes mit Hilfe von 3D Druck erstellen, damit auch blinde Personen sich im Happy Lab zurechtfinden, normale Schrift erhaben, Braille Schrift nur eventuell
Fähigkeiten und Schwerpunkte	CAD, 3D-Druck

Projekt 5: Höhenverstellbare Tische fürs HappyLab

Projektname	Höhenverstellbare Tische fürs HappyLab
Projekteinreichung	Karim Jafarmadar (HappyLab)
Mentor*in	Lukas vom HappyLab
Projektbeschreibung	Hier wird mit CNC Fräse gearbeitet, um höhenverstellbare Tische fürs HappyLab zu erstellen. Ziel ist, dass die Tische dann auch für Rollstuhlfahrer*innen geeignet sind.
Fähigkeiten und Schwerpunkte	CAD, CNC, Metallverarbeitung, Holzverarbeitung

Projekt 6: Flexible Tablet-Halterung

Projektname	Flexible Tablet-Halterung
Projekteinreichung	Wolfgang Zeis
Mentor*in	Benjamin Klaus
Projektbeschreibung	Es soll eine einstellbare, robuste Tablethalterung (evtl. Auch für Handy oder Laptop nutzbar) für Bettlägrige sein, die am Krankenbett befestigt werden kann. Das Tablet soll dabei z.B über dem Kopf in Rückenlage oder seitlich, auch gedreht, für Seitenlage positionierbar sein.
Fähigkeiten und Schwerpunkte	CAD, 3D-Druck, Lasercut

Projekt 7: Flexibler Rollstuhl-Tisch

Projektname	Flexibler Rollstuhl-Tisch
Projekteinreichung	Harry Großmayer
Mentor*in	Iris Nemec
Projektbeschreibung	Harry möchte gerne ein "Tischerl" designen, das für seinen E- Rollstuhl passt und stabil montierbar ist.

	Wenn er im Garten sitzt, möchte er gerne mit dem Ipad arbeiten oder ein Buch lesen oder zeichnen
Fähigkeiten und Schwerpunkte	CAD, 3D-Druck, Metallverarbeitung, Holzverarbeitung

Projekt 8: Trinkverstärker

Projektname	Trinkverstärker
Projekteinreichung	Felix Pell, Christoph Habicher
Mentor*in	Chris Veigl, Beni Aigner
Projektbeschreibung	Becher mit eingebauter Pumpe bzw. Rückschlagventil, um die benötigte Saugkraft beim Trinken mit Trinkhalmen zu verringern.
Fähigkeiten und Schwerpunkte	Programmieren, CAD, 3D-Druck, Regelungstechnik

Projekt 9: Optical Braille Recognition

Projektname	Optical Braille Recognition
Projekteinreichung	Erich Schmid
Mentor*in	Sebastian Ganger
Projektbeschreibung	Seite in Brailleschrift wird auf den Flachbettscanner gelegt oder fotografiert Die Punktmuster werden identifiziert Den Punktmustern werden die Codes von Brailletabellen zugeordnet Der Braillecode wird in optisch lesbare Zeichen umgewandelt, gespeichert, am Bildschirm ausgegeben und/oder gedruckt Brailleschrift kann von sehenden Personen gelesen werden!
Fähigkeiten und Schwerpunkte	Programmieren, Bildverarbeitung

Projekt 10: 3D Druck mechanischer Hilfsmittel Fingerführraster, Bleistifthalter, individuelle Kopfstützen

Projektname	3D Druck mechanischer Hilfsmittel

Projekteinreichung	Martin Schober, Felix Pell
Mentor*in	Beni Aigner
Projektbeschreibung	Stifthalterung: Ziel wäre Code-Generator, der nach Vorgaben Druckfile in individueller Größe ausgibt. Fingerführraster iPad für Sprachausgabe: Das iPad wird im Bereich Unterstützte Kommunikation oft zur Sprachausgabe eingesetzt. (Apps MetaTalk, GoTalk now). Oft schwierig, die Felder zur Sprachausgabe am Display zu treffen. Abhilfe schaffen könnte ein Fingerführ-Raster, der den Finger stabilisiert. Challenge: IPads haben unterschiedliche Größen, Apps je nach Niveau verschieden große Felder, Ziel wäre ein anpassbarer Code ("Customizer"). Individuelle Kopfstützen: maßgefertigte Kopfstützen aus 3D Druck
Fähigkeiten und Schwerpunkte	Programmieren, CAD, 3D-Druck, Lasercutter

Projekt 11: Alexa auf Knopfdruck

Projektname	Alexa auf Knopfdruck
Projekteinreichung	Walter Esberger
Mentor*in	
Projektbeschreibung	Alexa auf Knopfdruck - Ein Sprachdienst soll durch Drücken einer Taste oder Annäherung einer Person aktiviert werden.
Fähigkeiten und Schwerpunkte	Programmieren

Nicht umsetzbare Projektvorschläge

aufgrund von Sicherheitsrisiken oder zu hoher Komplexität waren folgende Projekte im Rahmen des Hackathons leider nicht machbar:

- Starke Cyber Arme, Exoskelette
- Spider Wheelchair
- Atemhilfe beim Verschlucken
- Am Rollstuhl montierter Hebelift
- Mobilisierende Kleidung (Anti-Dekubitus)

- Betttoilette
- Eyetracker + Umgebungssteuerung

Support und Schulungen bei Bedarf

Folgender Support und Schulungen können bei Bedarf und Interesse angeboten werden:

- Workshops im Happy Lab
 - Fusion 360: 3D Design / CAD
 - o 3D Drucker Einschulung
 - Lasercutter Einschulung
 - Löten Einschulung
- Start-up Mitgliedschaft im Happy Lab:
 - o Gratis für Hackathon-Teinehmer*innen bis 23.4.
 - Eintritt zu Öffnungszeiten möglich!
- Workshop mit Asterics Grid zur Unterstützten Kommunikation mit Benjamin Klaus (online)

Materialkosten

- Pro Projekt stehen €100 für Material zur Verfügung
- Direkt im HappyLab FabStore verfügbar:
 Plexiglas, Holz, Graviermaterial, Folien, Karton, Werkzeug, Platinen
- Weiteres Material (zb. Elektronik-Komponenten) kann über die FH Technikum Wien bestellt werden Bestellanfragen (inkl. Bezugsquelle) bitte bis 15.3. an: office@asterics-foundation.org
- Bei höheren Aufwänden Bitte bei uns anfragen, ev. es gibt noch einen "Puffer" oder: Person, für die eine Lösung bestimmt ist, hilft bei der Finanzierung mit
- Dank gilt unserem Sponsor: MA23 der Stadt Wien

Projektauswahl (Voting)

- Abstimmung über https://wbt.wien/projektauswahl
- Das Auswahlformular ist bis Sonntag, 20.2. verfügbar
- Ergebnisse werden bis Mittwoch, 23.2. per Email ausgesendet

Kommunikation und Termine

- Wir verwenden das Tool Slack zur Kommunikation für Fragen und zum Austausch innerhalb der Projektteams
- - https://join.slack.com/t/technikum-wien-welt/shared_invite/zt-13lbg6ydh-QpJbX8A4st7x6bSwBm74sw
- hier "Join via Email" auswählen
- Aktivierung erfolgt über Code, der per Email zugesendet wird
- Termine für Workshops werden mit teilnehmenden Personen und Teams nach Bedarf vereinbart, sowie über Slack + Email kommuniziert!
- Der Hackathon findet am 22. + 23. April im HappyLab statt
- Am Ende des Hackathons 23.4., 17 h werden die Ergebnisse präsentiert
- Ihr könnt uns jederzeit per Email erreichen unter office@asterics-foundation.org

Kontakt und weitere Informationen

- Wissensdrehscheibe für Barrierefreie Technologien https://wbt.wien
- AsTeRICS-Foundation https://www.asterics-foundation.org
- Iris Nemec iris.nemec@technikum-wien.at
- Agnes Scheibenreif <u>agnes.scheibenreif@technikum-wien.at</u>
- Chris Veigl christoph.veigl@technikum-wien.at
- Das Projekt "Wissensdrehscheibe für Barrierefreie Technologien" wird durch die Stadt Wien (Magistratisabteilung 23 für Wirtschaft, Arbeit und Statistik) finanziell unterstützt (Projektnummer 26-02).

Frage- und Vorstellungsrunde

Viel Erfolg und Spaß beim Hackathon!